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Abstract

Settlement based design for shallow foundations realizing the consolidation aspect is a major challenge in geotechnical engineering. The
recompression index (Cr) from the oedometer test is used to estimate the consolidation settlement of over-consolidated (OC) clays. Since the
determination of Cr from oedometer tests is relatively time-consuming and is usually determined for a single unloading, empirical equations based on
index properties can be useful for settlement estimation. Correlations have been proposed to relate the Cr of clay deposits to other soil parameters. Since
existing equations are incapable of estimating Cr well, artificial intelligence methods are used to predict them. In the present study, a Group Method of
Data Handling (GMDH) type neural network is used to estimate the Cr from more simply determined index properties such as the liquid limit (LL) and
initial void ratio (e0) as well as specific gravity (Gs). In order to assess the merits of the proposed approach, a database containing 344 data sets has been
compiled from case histories via geotechnical investigation sites in the province of Mazandaran, along the southern shoreline of the Caspian Sea, Iran.
In addition to the physical properties mentioned already, the natural water content (ωn), plastic index (PI) and dry density (γd) were also included in the
model development. A comparison was carried out between the experimentally measured recompression indexes and the predictions in order to evaluate
the performance of the GMDH neural network method. The results demonstrate that an improvement with respect to the other correlations has been
achieved. Finally, a sensitivity analysis of the obtained model was performed to study the influence of the input parameters on the model output. The
sensitivity analysis reveals that e0 and LL have significant influence on predicting Cr .
& 2015 The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

Geo-materials are extremely complex in terms of their
stress–strain–time dependent behavior. These are due to soil
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5 The Japanese Geotechnical Society. Production and hosting by

g author. Tel: þ989113700669.
sses: afshin_geotec@yahoo.com (A. Kordnaeij),
tu.ac.ir (F. Kalantary),
@yahoo.com (B. Kordtabar),
(H. Mola-Abasi).
der responsibility of The Japanese Geotechnical Society.
non-linear stress–strain relationships, the time dependent
response to loading, the elasto-plastic performance under the
loading and unloading situation and the effects of stress history
(pre-consolidation). For any earthen structure, a transition
element is used to carry the loads from the super structure to
the substructure or naturally deposited materials. The bearing
capacity, settlement and structural design are the backbone of
foundation engineering practice. Among three common occur-
rence settlement components, i.e. immediate, creep and con-
solidation time dependents, the latter plays an important role in
Elsevier B.V. All rights reserved.
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Nomenclature

a Vector of unknown coefficients of the quadratic
polynomial equation

ai Coefficients of the quadratic polynomial equation
Cmi Actual measured output
Cpi Predicted output
Cc Compression index
Cr Recompression index
E Mean square error
e0 Initial void ratio
Gi Quadratic function
Gs Specific gravity of soil particles
H Initial thickness of the soil layer
i Number of the value considered in cumulative

probability P
LL Liquid limit (%)
M Total numbers of data sets

MAD Mean absolute deviation
MAPE Mean absolute percent error
n Total numbers of input variables
PI Plastic index (%)
P Cumulative probability
RMSE Root mean square error
R2 Absolute fraction of variance
Sc Primary consolidation settlement
X Input variable
xi Input vector
Y Vector of output's value from observation
y Actual output
ŷ Predicted output
s

0
c Over consolidation pressure

s
0
v0 Initial vertical effective stress

Δsv Load increment
ωn Natural water content (%)
γd Dry density

Fig. 1. Definition of Cc and Cr indices.

A. Kordnaeij et al. / Soils and Foundations 55 (2015) 1335–13451336
geotechnical engineering (Holtz et al., 1986, 2011; Burland,
1990; Budhu, 2007).

The ability to predict settlement in saturated clays, especially
the time dependent type of settlement known as consolidation, is
an important issue in geotechnical engineering. Several techni-
ques have been developed to predict settlement, including pro-
babilistic measurements, analytical methods, regression analysis
and simplified methods (Skempton and Sowa, 1963).

To calculate settlement for clays, laboratory consolidation
tests which depict one-dimensional compression behavior need
to be performed on samples taken from representative values
(Terzaghi et al., 1996).

In settlement calculation for clays, in the case of normally
consolidated (NC) condition, only the compression index (Cc)
from the conventional oedometer test is required. If the clay is
over consolidated (OC), then both compression and recom-
pression indices (Cr) are necessary. Cr must be obtained to
compute the level of settlement for OC clays as opposed to NC
clays (Fig. 1).

For an NC clay deposit, the settlement due to an increase in
load can be determined from the following equation:

Sc ¼
CcH

1þe0
log

s
0
v0þΔsv
s0
v0

� �
ð1Þ

In OC clays, if s
0
v0þΔsvrs

0
c :

Sc ¼
CrH

1þe0
log

s
0
v0þΔsv
s0
v0

� �
ð2Þ

And s
0
v0þΔsv4s

0
c then:

Sc ¼
CrH

1þe0
log

s
0
c

s0
v0

� �
þ CcH

1þe0
log

s
0
v0þΔsv
s0
c

� �
ð3Þ

where e0¼ initial void ratio, Δsv¼ load increment, s
0
c¼pre-

consolidation pressure, s
0
v0¼ initial vertical effective stress,

Cc¼compression index and Cr¼ recompression index.
In spite of the fact that the order of magnitude of the
settlement of NC soils is approximately ten times greater than
OC soil, and as a result the coefficient Cc may appear to be of
more significance than Cr, this study concentrates on the
development of correlations between Cr and the physical
properties of soils, since the upper layers of soil adjacent to
foundations are often over-consolidated. Furthermore, with the
increased usage of as advanced constitutive models in numer-
ical packages, the development of such correlations to arrive at
better estimates of the coefficient of recompression is required.
It is noteworthy that Cr is both stress and density dependent.
Thus, substituting this concept with the linear elastic model is
a great over-simplification.
As the oedometer test in the laboratory takes much longer to

complete than simpler index property tests, various attempts have
been made to estimate the Cr from other geotechnical tests which
can be carried out more easily. Many researchers have used single
parameter models to estimate Cr , i.e., liquid limit (LL), plastic
index (PI), natural water content (ωn), initial void ratio (e0) and
dry density (γd). However, others recommend multiple soil
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parameter models for the estimation of Cr. As presented in Table
1, several types of empirical correlations (one and multi-variable
equations) have been selected. Moreover, easily obtainable funda-
mental characteristics of soils, which are of the same origin and/or
from the same area, can be used to find the Cr indices of fine
grained soils by these formulas.

To the authors' knowledge, there is no established theore-
tical relation between Cr and physical soil properties (e.g.
liquid limit); thus, any attempt to establish an empirical
correlation must be based on a general statistical analysis
and system identification techniques. The interdependency of
factors involved in such problems prevents the use of a simple
regression analysis and demands a more extensive and
elaborate method.

The ANN technique is well suited to the modeling of complex
problems with an unknown relationship between the model
variables. The advantage of the ANN is that it is very useful in
learning the complex relationships between multi-dimensional
data. Recently ANNs have been employed to model complex
relationships between input and output data sets in geotechnical
engineering (Uncuoglu et al., 2008; Ornek et al., 2012; Kalantary
and Kordnaeij, 2012; Tarawneh, 2013; Shahin, 2014; Ochmanski
et al., 2015). However, the main disadvantage of traditional ANN
is that the detected dependencies are hidden within the ANN
structure (Nariman-Zadeh et al., 2003).

The Group Method of Data Handling (GMDH) type neural
network (NN) is a powerful identification technique and can be
used to model complex systems, where unknown relationships
exist between variables, without having specific knowledge of
processes.

The present study aims to develop a GMDH-type NN for the
prediction of Cr based on various soil parameters, such as e0,
LL and Gs without carrying out consolidation tests. Finally, the
result of proposed method is compared with that of empirical
equations referenced to measure the compression index.

2. Background to current methods

The aim of the Group Method of Data Handling (GMDH) is
to identify the functional structure of a model hidden in
Table 1
Some widely used recompression index equations.

Equation

Cr ¼ 0:0003 ωnþ7ð Þ
Cr ¼ 0:015 e0þ0:007ð Þ
Cr ¼ 0:041�0:0268 e0
Cr ¼ 0:045�0:0283 e0
Cr ¼ 0:126�0:115 e0
Cr ¼ 0:00194 PI�4:6ð Þ
Cr ¼ 0:0007 LLþ0:0062
Cr ¼ 0:1257 γ�2:8826

d

Cr ¼ 0:126 e0þ0:003 LL�0:06ð Þ
Cr ¼ 0:0133 e0:036 ωn

Cr ¼ 0:000463 LL Gs

Cr ¼ �0:000319 ωn�0:027277 γdþ0:064019 e0þ0:037
empirical data (Ivakhnenko, 1971). The GMDH algorithm is
a self-organizing approach by which gradually complicated
models are generated based on the evaluation of their
performances on a set of multi-input-single-output data pairs.
Over the last few years, GMDH-type neural networks have
been applied to many geotechnical engineering problems with
some degree of success. In this field, Kalantary et al. (2009),
Ardalan et al. (2009), Shooshpasha and Mola-Abasi (2012),
Mola-Abasi et al. (2013) and Eslami et al. (2014) applied
GMDH model in predicting the undrained shear strength of
clays, pile bearing capacity, liquefaction induced lateral dis-
placement, shear wave velocity and the liquefaction potential
based on the geotechnical soil properties, respectively. There-
fore, this approach can be used in the empirical correlation of
Cr as a step forward in comparison with statistical approaches.
3. Review of GMDH-type neural networks model

The concept of an artificial neural network (ANN) was
inspired by the complex architecture of the human brain,
regarded as a highly non-linear, parallel operating system
(Haykin, 1999). Group Method of Data Handling (GMDH)
type neural network is a self-organizing approach by which
gradually complicated models are generated based on the
evaluation of their performances on a set of multi-input
single-output data pairs (Xi , yi) (¼1, 2,…, M). The main
idea of GMDH is to build an analytical function in a feed
forward network based on a quadratic node transfer function
whose coefficients are obtained using the regression technique.
Using the GMDH algorithm, a model can be represented as a
set of neurons in which different pairs in each layer are
connected through a quadratic polynomial, producing new
neurons in the next layer. Such representation can be used to
map inputs to outputs. The formal definition of the identifica-
tion problem is to find a function f̂ that can be approximately
used instead of the actual one, f in order to predict output ŷ for
a given input vector X ¼ x1; x2; x3; …; xnð Þ as close as
possible to the actual output y. Therefore, given M observation
Eq. no. Reference

(4) Azzouz et al. (1976)
(5) Azzouz et al. (1976)
(6) Gunduz and Arman (2007)
(7) Gunduz and Arman (2007)
(8) Gunduz and Arman (2007)
(9) Nakase et al. (1988)
(10) Sinan (2009)
(11) Sinan (2009)
(12) Azzouz et al. (1976)
(13) Sinan (2009)
(14) Nagaraj and Murty (1985)
(15) Sinan (2009)
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of multi-input-single-output data pairs (Farlow, 1984):

yi ¼ f xi1; xi2; xi3; …; xinð Þ ; i¼ 1 ; 2; 3; …; Mð Þ ð16Þ
It is now possible to train a GMDH type of artificial neural

network to predict the output values ŷi for any given input
vector X ¼ xi1; xi2; xi3; …; xinð Þ, that is:
ŷi ¼ f̂ xi1; xi2; xi3; …; xinð Þ i¼ 1 ; 2; 3; …; Mð Þ ð17Þ

The problem is now to determine a GMDH type of artificial
neural network so that the square of the differences between
the observed and predicted output is minimized as follow:

XM
i ¼ 1

f̂ xi1; xi2; xi3; …; xinð Þ�yi
h i2

- min ð18Þ

The general connection between input and output variables
can be expressed by a complicated discrete form of the
Volterra functional series, known as the Kolmogorov-Gabor
polynomial. Hence:

y¼ a0þ ∑
n

i ¼ 1
aixiþ ∑

n

i ¼ 1
∑
n

j ¼ 1
aijxixjþ ∑

n

i ¼ 1
∑
n

j ¼ 1
∑
n

k ¼ 1
aijkxixjxkþ…

ð19Þ
This full form of mathematical description can be repre-

sented by a system of partial quadratic polynomials consisting
of only two variables (neurons) in the form of:

ŷ ¼G xi; xj
� �¼ a0þa1xiþa2xjþa3xixjþa4x

2
i þa5x

2
j ð20Þ

By this means, the partial quadratic description is recur-
sively used in a network of connected neurons to build the
general mathematical relation between inputs and output given
in Eq. (19). The coefficients ai in Eq. (20) are calculated using
regression techniques to minimize the difference between the
observed output, y and the calculated one, ŷ for each pair of xi,
xj as input variables (Jamali et al., 2009). Apparently, a tree of
polynomials is constructed using the quadratic form given in
Eq. (20) whose coefficients are obtained in a least squares
scheme. In this way, the coefficients of each quadratic function
Gi are obtained for an optimal fit for the output in the whole set
of input–output data pairs, that is:

E¼
PM

i ¼ 1 yi�Gi xi; xj
� �� �2

M
-min ð21Þ

In the basic form of the GMDH algorithm, all the
possibilities of two independent variables out of the total n
input variables are taken in order to construct the regression
polynomial in the form of Eq. (20) that best fits the dependent
observations yi ; i¼ 1; 2; …; M

� �
in a least squares sense.

Consequently
n

2

� �
¼ n n�2ð Þ

2 neurons will be built up in the

first hidden layer of the feed forward network from the
observations yi; xip; xiq

� �
; i¼ 1; 2; 3;…; Mð Þ� �

for different
p; qA 1; 2; 3; …; nf g. In other words, it is now possible to
construct M data triples yi; xip; xiq

� �
; i¼ 1; 2; 3;…; Mð Þ� �

from observations using p; qA 1; 2; 3; …; nf g in the form
of (Jamali et al., 2009)

x1p x1q ⋮ y1
x2p x2q ⋮ y2
… … ⋮ …
xMp xMq ⋮ yM

2
66664

3
77775

Using the quadratic sub-expression in the form of Eq. (20)
for each row of M data triples, the following matrix equation
can be readily obtained as:

Aa¼ Y ð22Þ

a¼ a0; a1; a2; a3; a4; a5f g ð23Þ

Y ¼ y1; y2; y3;…; yM
� �T ð24Þ

It can be readily seen that:

A¼

1 x1p x1q x1px1q x21q x21q

1 x2p x2q x2px2q x22p x22q
… … … … … …
1 xMp xMp xMqxMq x2Mp x2Mq

2
66664

3
77775 ð25Þ

The least squares technique from the multiple regression
analysis leads to solution of the normal equations, in the form of:

a¼ ATA
� ��1

ATY ð26Þ
This determines the vector of the best coefficients of the

quadratic Eq. (20) for the whole set of M data triples. Notice
that this procedure is repeated for each neuron of the next
hidden layer according to the connectivity topology of the
network. However, such a solution directly from normal
equations is rather susceptible to the rounding off of errors
and, more importantly, to the singularity of these equations.
There are two main concepts involved within GMDH type

of artificial neural networks design, namely, the parametric and
the structural identification problems. Nariman-Zadeh et al.
(2003) presents hybrid genetic algorithm (GA) and singular
value decomposition (SVD) method to optimally design such
polynomial neural networks.

3.1. Application of GA in the topology design of GMDH-type
neural networks

Stochastic methods are commonly used in the training of
neural networks in terms of associated weights or coefficients
and have successfully performed better than traditional
gradient-based techniques (Atashkari et al., 2007). The litera-
ture shows a wide range of evolutionary design approaches
either for architecture or connection weights separately, in
addition to efforts to work with them simultaneously. In most
of the GMDH-type neural networks, neurons in each layer are
only connected to a neuron in the adjacent layer, as was the
case in Methods I and II previously reported in Nariman-Zadeh
et al. (2003). Considering this, it was possible to present a



Table 2
Descriptive statistics of variables.

Variable Minimum Mean Maximum

e0 0.466 0.794 1.882
ωn 12.7 29.76 70
LL 25 42.22 79
PI 5 20.65 51
Gs 2.43 2.64 2.8
Cr 0.0088 0.034 0.129

Fig. 3. Descriptive data collection location.
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simple encoding scheme for the genotype of each individual in
the population. The encoding schemes in general structure
GMDH-type neural networks (GS-GMDH) must, however,
demonstrate the ability to represent the different lengths and
sizes of such neural networks. In Fig. 2, the neuron ad in the
first hidden layer is connected to the output layer by directly
going through the second hidden layer. Therefore, it is now
very easy to notice that the name of output neuron (network's
output) includes ad twice as abbcadad. In other words, a
virtual neuron named adad has been constructed in the second
hidden layer and used with abbc in the same layer to make the
output neuron abbcadad, as shown in Fig. 2.

Such repetition occurs whenever a neuron passes some
adjacent hidden layers and connects to another neuron in the
next 2nd, or 3rd, or 4th, or ... the following hidden layer. In
this encoding scheme, the number of repetitions of that neuron
depends on the number of hidden layers, ~n, and is calculated as
2 ~n. It is easy to realize that a chromosome such as abab bcbc,
unlike chromosome abab acbc for example, is not valid in GS-
GMDH networks and has to be simply re-written as abbc
(Jamali et al., 2009).

The genetic operators of crossover and mutation can now be
implemented to produce two offspring from two parents. The
natural roulette wheel selection method is used to randomly
choose the two parents for the two offspring. The incorpora-
tion of a genetic algorithm into the design of such GMDH-
type neural networks allows each network to be represented as
a string of concatenated sub-strings of alphabetical digits. The
fitness, Φ of each entire string of symbolic digits which
represents a GMDH-type neural network model is evaluated
in the following form (Atashkari et al., 2007).

Φ¼ 1=E ð27Þ

where E is the mean square of error given by Eq. (21),
which is minimized through the evolutionary process by
maximizing the fitness, Φ. The evolutionary process starts by
randomly generating an initial population of symbolic strings,
each as a candidate solution. Then, using the genetic opera-
tions of roulette wheel selection, crossover, and the mutation
of the entire population of symbolic strings improve gradually.
In this way, GMDH-type neural network models with pro-
gressively increasing fitness, Φ, are produced until no further
significant improvement is achievable (Ardalan et al., 2009).
abbcadad

abbc

ad

d

ab

c

b

a

bc

Fig. 2. A GS-GMDH network structure of a chromosome (Nariman-Zadeh
et al., 2003).
4. Database compilation

The databases include data compiled from 344 consolidation
tests for soils sampled at 115 construction sites in province of
Mazandaran, Iran (Geotechnical Report of Site Investigation).
Following the previous trend of studies, in this study the Cr of the
soils was assumed to be affected by the initial void ratio (e0),
natural water content (ωn), liquid limit (LL), plastic index (PI)
and specific gravity (Gs) as summarized in Table 2. The compiled
database contains 344 data produced by the Technical and Soil
Laboratory of Mazandaran Province of Iran (Fig. 3) which is one
of the most experienced consultants in the country, as summar-
ized in Fig. 4. The samples were all collected using a standard
procedure and tests were carried out using ASTM D2435 (2011).

5. Evaluation of Cr using GMDH

The main objective of this research is to develop a polynomial
function of input geotechnical parameters to estimate Cr as output.
In order to demonstrate the prediction ability of the evolved
GMDH-type neural network, the data set was divided randomly
into two separate data set: the training data set and the testing data
set. The aim of the testing data set is to obtain a more generalized
model, but it is not incorporated in the training procedure.
According to an accepted rule, training and testing data sets must
be similar in terms of their statistical properties such as mean and
standard deviation (Tokar and Johnson, 1999).
In this study, among 344 data sets, 44 randomly collected

data sets were used in the testing stage and 300 data sets were
used in the training stage (Table 3).
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Table 3
Descriptive statistics of variables used in the GMDH.

Variable Train (300 data set) Test (44 data set)

Minimum Mean Maximum Minimum Mean Maximum

Input e0 0.466 0.79 1.882 0.517 0.82 1.237
ωn 12.7 29.58 70 19.5 30.96 49.2
LL 25 42 79 26 43.69 68.2
PI 5 20.5 51 5 21.75 45.2
Gs 2.43 2.64 2.8 2.52 2.64 2.73

Output Cr 0.0088 0.033 0.129 0.01 0.039 0.096

Fig. 5. Evolved structure of generalized GMDH neural network.

A. Kordnaeij et al. / Soils and Foundations 55 (2015) 1335–13451340
In order to overcome the different magnitudes of the input
variables, data need to be normalized. Normalization can be
done by several equations. In this work, data is scaled between
0.1 and 0.9 as follows (Mehdizadeh and Movagharnejad,
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Fig. 7. The measured Cr obtained from the consolidation test versus the
GMDH estimated Cr (result of training process).
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2011):

ðScaledÞvalue ¼
Actualð Þvalue�min Actual valueð Þ

max Actual valueð Þ�min Actual valueð Þ
�0:8þ0:1 ð28Þ

Various parameters involved in the GMDH predictive such
as population size, number of generations, number of hidden
layers, crossover probability and mutation probability. The
selection of parameters will affect the model generalization
capability of GMDH. To genetically design such a GMDH-
type neural network, a population of 100 individuals with a
crossover probability of 0.95 and mutation probability of 0.01
was used in 300 generations for the population size with no
further improvements made. A number of hidden layers can be
tried to achieve the best relative fit. In this study single, double
and triple layers were examined, and although the three-layer
provided a slightly better fit, it was decided to opt for a single
layer to avoid over-fitting and to obtain a simpler correlation. It
is noteworthy that the inherent inaccuracies of the test data and
the uncertainties associated with experimentation prohibit an
exact fit, and only the general trend is determinable. The
structure of the evolved GMDH-type neural network is shown
in Fig. 5 corresponding to the genome representations: Initial
void ratio (e0), liquid limit (LL) and specific gravity (Gs),
respectively.
Of note, dry density (γd), natural water content (ωn) and

plastic index (PI) are linearly related to the hidden layer
parameter (Y1), e0 and LL respectively (Fig. 6). Thus these
three variables do not appear in the GMDH structure.
The corresponding polynomial representation of such model

for Cr is as follows:

Cr ¼ �0:0115þ0:587 Y1þ0:00017 LLþ0:524 Y1
2

þ0:000008 LL2þ0:0015 LL: Y1 ð29� aÞ

Y1 ¼ �1:689þ0:125 e0þ1:286 Gs�0:027e20�0:251 G2
s

þ0:00004 e0 :Gs ð29� bÞ
Figs. 7 and 8 show the relationship between output targets

and predicted values obtained through the training and testing
process. The behavior of the GMDH-type neural network
model is also depicted in Fig. 9 for all 344 data set of Cr.
The model shows one of the best correlations for both the

training and testing data compared with the conventional
empirical formulas and the proposed equation results in points
more closely located around the 1:1 line. It can be seen that the
evolved GMDH-type neural network could successfully model
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Fig. 9. Comparison of measured values of Cr with the estimated values using evolved GMDH neural network for all 344 data set.

Table 4
Statistical results for GMDH.

Cr, Model R2 MAPE RMSE MAD

Cr , GMDH (training) 0.954 19.15 0.008 0.0069
Cr , GMDH (testing) 0.956 18.27 0.008 0.0066
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and predict the output of testing data that was not used during
the training process.

The absolute fraction of variance (R2), root mean squared
error (RMSE), mean absolute percent error (MAPE) and mean
absolute deviation (MAD) were used to evaluate the perfor-
mance of the proposed equations and models, which are
defined as follows:

R2 ¼ 1�
PM

1 ðCmi�CpiÞ2PM
1 ðCmiÞ2

" #
ð30Þ

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
1

ðCmi�CpiÞ2
vuut ð31Þ

MAPE¼
PM

1 jCmi�CpijPM
1 Cmi

� 100 ð32Þ

MAD¼
PM

1 jCmi�Cpij
M

ð33Þ

where Cpi and Cmi are the predicted and the measured Cr

respectively.
The lower the RMSE, MAPE and MAD values, the better the

model performance. Under ideal conditions, an accurate and
precise method gives R2 of 1.0, RMSE, MAPE and MAD of 0.

In Table 4, the predictability of the GMDH model is
statistically compared with the empirical formulas. The value
of RMSE, MAPE and MAD are found for the GMDH model
in both training and testing stage.

6. Comparison of existing equations

In order to prepare a platform for comparison, the collected
data sets were used to examine the accuracy of the empirical
correlations proposed by other researchers (Table 1) and the
RMSE, MAPE, MAD and the R2 values were determined and
compared against GMDH model. Furthermore, the coefficients
of the empirical correlations were modified to maximize the R2

value. A summary of the results is presented in Table 5.
It can be seen that the best fit amongst the previously

proposed correlations are achieved by Nakase et al. (1988) and
Sinan (2009) (Eqs. 9 and 10). By modifying the coefficients of
existing relationships a slightly better fit is achieved (Eqs. 34–
41). Note, however, the least disparity in Cr prediction is
achieved by the GMDH approach.
A graphic representation of the comparative accuracy of the

various correlations and the proposed method is shown by
plotting the Scaled Relative Error (Er) versus Scaled Cumu-
lative Frequency (SCF), where

Er ¼ 100 Cpi�Cmi

� �
=Cmi ð42Þ

As is seen in Fig. 10, a broader range of predictions is given
by almost all of the empirical relationships in comparison to
GMDH approach. The proposed GMDH model is distinctly
more accurate in comparison with most of the other empirical
correlations and the modified correlations (Table 5).

7. Sensitivity analysis

The sensitivity analysis of the obtained model is performed
to evaluate the input parameters influence on the model output.
The sensitivity test is carried out by varying each of the

normalized input neurons at a constant rate, one at a time,
while the other variables are kept constant. Various constant
rates (0.75, 0.80, 0.85,… , 1.25) are selected in the study. For



Table 5
Statistical results for conventional empirical formulas (Cr).

Equation Eq. no. R2 MAPE RMSE MAD

Cr ¼ 0:0003 ωnþ7ð Þ (4) 0.45 67.44 0.028 0.228
Cr ¼ 0:015 e0þ0:007ð Þ (5) 0.49 64.5 0.027 0.021
Cr ¼ 0:041�0:0268 e0 (6) 0.54 51.89 0.0255 0.0172
Cr ¼ 0:045�0:0283 e0 (7) 0.58 50.08 0.0243 0.0166
Cr ¼ 0:126�0:115 e0 (8) 0.39 81.44 0.0359 0.0269
Cr ¼ 0:00194 PI�4:6ð Þ (9) 0.85 33.5 0.0145 0.0111
Cr ¼ 0:0007 LLþ0:0062 (10) 0.86 34.02 0.0139 0.0113
Cr ¼ 0:1257 γ�2:8826

d (11) 0.82 39.8 0.0164 0.0135
Cr ¼ 0:126 e0þ0:003 LL�0:06ð Þ (12) 0.45 67.98 0.028 0.023
Cr ¼ 0:0133 e0:036 ωn (13) 0.46 67.5 0.0283 0.0229
Cr ¼ 0:000463 LL Gs (14) 0.69 57.2 0.0216 0.0194
Cr ¼ �0:000319 ωn�0:027277 γdþ0:064019 e0þ0:037 (15) 0.52 70.74 0.0268 0.024
This study correlation ðGMDHÞ (29) 0.95 18.83 0.008 0.0068
This study correlation ðCr ¼ �0:025þ0:002ωnÞ (34) 0.86 32.17 0.0142 0.0109
This study correlation ðCr ¼ �0:024þ0:0732 e0Þ (35) 0.88 29.38 0.0132 0.0099
This study correlationðCr ¼ 0:0048þ0:001 PIÞ (36) 0.87 30.5 0.0135 0.0103
This study correlation ðCr ¼ �0:0214þ0:0013 LLÞ (37) 0.89 28.27 0.0125 0.009
This study correlationðCr ¼ 65:06 γ�2:84

d Þ (38) 0.87 31.05 0.0137 0.0105

This study correlation ðCr ¼ 0:000213ω1:486
n Þ (39) 0.86 31.54 0.014 0.0106

This study correlation ðCr ¼ �0:049þ0:052 e0þ0:001 LLÞ (40) 0.89 26.68 0.0124 0.009
This study correlation ðCr ¼ 0:095þ0:03e0�0:000025LL�0:0059γdÞ (41) 0.88 29.2 0.013 0.009

Fig. 10. Scaled relative errors of Cr estimated.

Fig. 11. Results of the sensitivity analysis of the obtained model for Cr .
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every input neuron, the percentage change in the output, as a
result of the change in the input neuron, is observed. The
sensitivity of each input neuron is calculated by the following
(Liong et al., 2000):

Sensitivity level of Xi %ð Þ ¼ 1
M

XM
j ¼ 1

% change in output
% change in input

� �
j

� 100

ð43Þ
Results of the sensitivity analysis of the obtained model are

shown in Fig. 11. It can be noticed from Fig. 11 that Cr is
considerably influenced by e0 and its value decreases by
increasing e0 value. Also, Gs has a little effect on the
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correlation.

8. Conclusions

Empirical correlations provide a means for the quick
evaluation of engineering parameters and the verification of
test results. However, ordinary regression analyses may miss
the inter-dependency of variables, and tend to be inefficient in
cases of multi-parametric problems such as the one at hand.

In this study, the performances of widely used single and
multi-variable empirical equations for the estimation of the
recompression index were evaluated using a database consist-
ing of 344 wide-ranging samples from the province of
Mazandaran, Iran. Using the same database, an attempt was
made to predict this index using a neural network simulation.
A sensitivity analysis on the obtained model was also used to
study the influence of various parameters.

The results indicate the following:

1. Amongst the previously proposed equations, the equations
proposed by Nakase et al. (1988) and Sinan (2009) gave the
lowest RMSE, MAPE, MAD and the highest R2 value.

2. The liquid limit appears to have the most influence on the
Cr value, since amongst the single parameter correlations,
the best fit is achieved by the one that utilizes the
liquid limit.

3. The developed GMDH-type neural network model was
proven to be more efficient than all of the empirical
correlations derived from an ordinary regression analysis.

It may thus be concluded that since all experimental data are
prone to inaccuracies and uncertainties, a global pattern
recognition technique such as GMDH with no partial perspec-
tive achieves a more accurate prediction than an ordinary
regression analysis.

Through this study it was determined that the most
influential physical characteristics of soils on Cr are the liquid
limit and the initial void ratio.
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